RUNOFF REDUCTION VOLUME, WATER QUALITY VOLUME AND STREAM CHANNEL PROTECTION SIZING CALCULATIONS

Multi-Family Development Albany Post Road 3119 Albany Post Road Village of Buchanan, NY

JMC Project: 22062

Drawing Reference: **DA-1**, **DA-2**

Computed by: **MT**Checked by: **XX**

Date Printed: 10/1/2025

WATER QUALITY VOLUME WORKSHEET

JMC Project:

22062 SITE

Design Point:

Multi-Family Development Albany Post Road	Drainage Area:	SITE
•		

Initial Wat	Initial Water Quality Treatment Volume							
DESCRIPTI	ION	Design Storm	Area	Impervious Area	Percent Impervious	Runoff Coefficient	Total Required WQ Volume	
SYME	3OL	P	A	Ι	%I	R_{V}	WQ_V	
VAI	LUE	1.5	3.87	2.53	65.48	0.639285587	13,461	
UN	IITS	In	Ac	Ac	%	CF	CF	
VALUE Enhanced Phosphorus Removal (WQ _V = 1-yr Storm Runoff)								

Runoff Reduction Techniques (Area)		
DESCRIPTION	Total Area	Impervious Area
SYMBOL	A	Ι
Conservation of Natural Areas		
Sheetflow to Riparian Buffers or Filter Strips		
Vegetated Swale		
Tree Planting / Tree Pit		
Disconnection of Rooftop Runoff		
Stream Daylighting		
TOTAL	_	
UNITS	Ac	Ac

Adjusted Water Quality Treatment Volume							
DESCRIPTION	Design Storm	Area	Impervious Area	Percent Impervious	Runoff Coefficient	Total Required WQ Volume	
SYMBOL	P	A	Ι	%I	R_{V}	WQ_V	
VALUE	1.5	3.87	2.53	65.48	0.639285587	13,461	
UNITS	In	Ac	Ac	%	CF	CF	
VALUE Enhanced Phosphorus Removal (WQ _V = 1-yr Storm Runoff)							

Net Water Quality Treatment Volume = Adjusted WQv - Provided RRv						
Initial Water Quality Treatment Volume	13,461	CF				
Adjusted Water Quality Treatment Volume	13,461	CF				
Provided Runoff Reduction Volume	2,711	CF				
Net Water Quality Treatment Volume	10,750	CF				

Date Printed: 10/1/2025

RUNOFF REDUCTION VOLUME WORKSHEET

JMC Project: 22062
Design Point: X

		Design Point:	X
Multi-Family Development Albany Post Road	Drainage Area:	XXX	
Total Water Quality Treatment Volume			
DESCRIPTION	SYMBOL	VALUE	UNITS
Initial Water Quality Volume	WQ_V	13,461	CF
Adjusted Water Quality Volume	WQ_V	13,461	CF
Minimum Runoff Reduction Volume			
DESCRIPTION	SYMBOL	VALUE	UNITS
Design Storm [90% Rainfall Event Number] or [1-yr Storm Depth]	P	1.5	In
Total Area of <i>new</i> Impervious Cover	Aic	2.53	Ac
Hydrologic Soil Group (HSG) Specific Reduction Factor	S	0.20	
Runoff Coefficient [0.05 + 0.009 x %I]	R_{V}	0.95	CF
Impervious Cover targeted for Runoff Reduction [S x Aic]	Ai	0.51	Ac
TOTAL VOLUME Required [RR $_V$ = (P x R $_V$ x Ai) / 12]	RR_{V}	2,619	CF
Runoff Reduction Techniques (Volume)			
GREEN INFRASTRUCTURE PRACTICE / SMP	SYMBOL	VALUE	UNITS
Stormwater Planter #1	RR_V	470	CF
Intensive Green Roof Areas (15 total)	RR_V	1,532	CF
Extensive Green Roof (LiveRoof)	RR_V	709	CF
	RR_V		CF
	RR_V		CF
	RR_V		CF

Runoff Reduction	
Is Total RR $_V > Adjusted WQ_V$?	NO
Is Total RR $_V > Minimum RR _V ?$	YES

TOTAL

 $RR_{\rm V}$

 RR_{V}

 $RR_{\rm V}$

 RR_{V}

2,711

Date Printed: 10/1/2025

CF

CF

CF

CF

STORMWATER PLANTER WORKSHEET

JMC Project: 22062
Design Point: 2
Drainage Area: PDA-2B

Stormwater Planter #1

Site Data for Drainage Area to be Treated by Practice				
DESCRIPTION	SYMBOL	VALUE	UNITS	
Design Storm [90% Rainfall Event Number]	P	1.5	In	
Impervious Area	I	0.30	Ac	
Area	A	0.30	Ac	
Percent Impervious	%I	100.00	%	
Runoff Coefficient [0.05 + 0.009 x %I]	R_{V}	0.95	CF	
TOTAL VOLUME Required [WQ $_V$ = (P x R $_V$ x A) / 12]	WQ_V	1,566	CF	
Design Storm [1-yr Storm Depth]	P		In	
TOTAL VOLUME Required (TMDL) [WQ $_V = 1$ -yr Storm Runoff]	WQ_V		CF	

Minimum Planter Bed Area			
DESCRIPTION	SYMBOL	VALUE	UNITS
Water Quality Volume	WQ_V	1,566	CF
Coefficient of permeability of filter media (hydraulic conductivity)	k	4.00	Ft / Day
Planter bed Depth (soil media)	d_{f}	1.50	Ft
Average Height of water above planter bed	h_{f}	0.50	Ft
Design planter bed drain Time	t_{f}	4.00	Hours
$\textbf{Required Surface Area of Planter Bed } \left[A_f = \left(WQ_V \ x \ d_f \right) / \left(k \ x \ (h_f + d_f) \ x \ t_f \right) \right]$	A_{f}	1,761.43	SF

Proposed Area			
DESCRIPTION	SYMBOL	VALUE	UNITS
Calculated planter bed area (Length x Width)			SF
Surface Area of Planter Bed Provided	A_{f}	1,838.00	SF
Actual Volume Provided	_	919	CF

Runoff Reduction		
DESCRIPTION	VALUE	UNITS
Is Proposed $Af > Required Af$?	YES	
Type of Planter	FLOW-THROUGH	
RRv Provided for Infiltration Planter	1,566	CF
RRv Provided for Flow-Through Planter in HSG 'C' Soils	705	CF
RRv Provided for Flow-Through Planter in HSG 'D' Soils	470	CF

Date Printed: 10/1/2025

GREEN ROOF WORKSHEET

JMC Project: 22062

Design Point: 2

Drainage Area: PDA-2C

Intensive Green Roof Areas (15 total)

Site Data for Drainage Area to be Treated by Practice				
DESCRIPTION	SYMBOL	VALUE	UNITS	
Design Storm [90% Rainfall Event Number]	P	1.5	In	
Impervious Area	I_N	0.02		
Area	A	0.02	Ac	
Percent Impervious	%I	100.00	%	
Runoff Volume [0.05 + 0.009 x %I]	R_{V}	0.95	CF	
TOTAL VOLUME Required [WQ $_V$ = (P x R $_V$ x A) / 12]	WQ_V	102	CF	

Proposed Green Roof			
DESCRIPTION	SYMBOL	VALUE	UNITS
Green Roof surface AREA	A_{RG}	60.00	SF
DEPTH of the Soil Media	D_{SM}	2.42	Ft
DEPTH of the Drainage Layer	D_{DL}	0.50	Ft
DEPTH of Ponding above surface	D_{P}	0.33	Ft
Porosity of the Soil Media	$n_{\rm SM}$	50%	%
Porosity of the Drainage Layer	$n_{ m DL}$	40%	%
VOLUME provided in Soil Media [$V_{SM} = A_{RG} \times D_{SM} \times n_{SM}$]	V_{SM}	72.50	CF
VOLUME provided in Drainage Layer $[V_{DL} = A_{RG} \times D_{SM} \times n_{SM}]$	V_{DL}	12.00	CF
VOLUME provided in Ponding Area [D _P x A _{RG}]		20.00	CF
TOTAL VOLUME Provided $[WQv \le V_{SM} + V_{DL} + (D_P \times A_{RG})]$	WQ _V	105	CF

Runoff Reduction			
DESCRIPTION	SYMBOL	VALUE	UNITS
Runoff Reduction volume provided	RR_V	102	CF

GREEN ROOF WORKSHEET

JMC Project: 22062
Design Point: 2
Drainage Area: PDA-2D

Extensive Green Roof (LiveRoof)

Site Data for Drainage Area to be Treated by Practice			
DESCRIPTION	SYMBOL	VALUE	UNITS
Design Storm [90% Rainfall Event Number]	P	1.5	In
Impervious Area	I_N	0.14	
Area	A	0.14	Ac
Percent Impervious	%I	100.00	%
Runoff Volume [0.05 + 0.009 x %I]	R_{V}	0.95	CF
TOTAL VOLUME Required [WQ $_V$ = (P x R $_V$ x A) / 12]	WQ_V	709	CF

Proposed Green Roof			
DESCRIPTION	SYMBOL	VALUE	UNITS
Green Roof surface AREA	A_{RG}	5,423.68	SF
DEPTH of the Soil Media	D_{SM}	0.50	Ft
DEPTH of the Drainage Layer	D_{DL}	0.17	Ft
DEPTH of Ponding above surface	D_{P}	0.04	Ft
Porosity of the Soil Media	$n_{\rm SM}$	50%	%
Porosity of the Drainage Layer	$n_{ m DL}$	25%	%
VOLUME provided in Soil Media $[V_{SM} = A_{RG} \times D_{SM} \times n_{SM}]$	V_{SM}	1,355.92	CF
VOLUME provided in Drainage Layer $[V_{DL} = A_{RG} \times D_{SM} \times n_{SM}]$	V_{DL}	225.99	CF
VOLUME provided in Ponding Area [D _P x A _{RG}]		225.99	CF
TOTAL VOLUME Provided $[WQv \le V_{SM} + V_{DL} + (D_P \times A_{RG})]$	WQ_V	1,808	CF

Runoff Reduction			
DESCRIPTION	SYMBOL	VALUE	UNITS
Runoff Reduction volume provided	RR_V	709	CF

PROPRIETARY PRACTICE WORKSHEET

JMC Project:	22062
Design Point:	3
Drainage Area:	PDA-3

Water Quality Structure - Jellyfish A

		Rainfall Dist	ribution Type:	Ш
		A	В	C
Coefficients for the equation unit peak	$\mathbf{C_0}$	-1.774	0.3301	2.4577
$[R = I_a / P]$	$\mathbf{C_1}$	1.8622	-0.7397	-0.4627
$[C_i = A \times R^2 + B \times R + C]$	$\mathbf{C_2}$	-0.0648	0.2276	-0.1932

Site Data for Drainage Area to be Treated by Practice			
DESCRIPTION	SYMBOL	VALUE	UNITS
Design Storm [90% Rainfall Event Number]	P	1.5	In
Impervious Area	I	1.59	Ac
Area	A	2.38	Ac
Percent Impervious	%I	66.75	%
Runoff Coefficient [0.05 + 0.009 x %I]	R_{V}	0.65	CF
TOTAL VOLUME Required $[WQ_V = (P \times R_V \times A) / 12]$	WQ_V	8,449	CF
Design Storm [1-yr Storm Depth]	P		In
TOTAL VOLUME Required (TMDL) [WQ $_V$ = 1-yr Storm Runoff]	WQ_V		CF

Water Quality Peak Flow Calculation			
DESCRIPTION	SYMBOL	VALUE	UNITS
Water Quality Volume	WQ_V	8,449	CF
Design Storm [90% Rainfall Event Number] or [1-yr Storm Depth]	P	1.5	In
Time of Concentration	t_{c}	0.1000	Hr
Runoff Volume [$Q = WQ_V / (A \times 3630)$]	Q	0.98	In
Curve Number [CN = $1000 / (10 + 5P + 10Q - 10 \times (Q^2 + 1.25 QP)^{1/2}]$	CN	94.53	
Curve Number	CN	95	
Initial Abstraction $[I_a = 200 / CN - 2]$	I_a	0.12	In
Ratio $[R = I_a/P]$	R	0.08	
$C_0 = A \times R^2 + B \times R + C$	C_0	2.47	
$C_1 = A \times R2 + B \times R + C$	C_1	-0.51	
$C_2 = A \times R2 + B \times R + C$	C_2	-0.18	
Unit Peak Discharge	q_{u}	638.67	cfs/mi ² /in
Peak Discharge $[Q_p = q_u \times A \times Q / 640]$	Q_p	2.32	cfs

Proposed Device			
DESCRIPTION	SYMBOL	VALUE	UNITS
Water Quality Peak Flow Provided	Q_p	2.9	cfs
Water Quality Volume Provided [WQ $_V = 640 \times 3600 \times Q_P / q_u$]	WQ_V	10,606	CF
Model Designation		JFPD0808	
Quantity		1	

PROPRIETARY PRACTICE WORKSHEET

JMC Project: 22062
Design Point: 3
Drainage Area: PDA-2E

Water Quality Structure B-6

 A
 B
 C

 -1.774
 0.3301
 2.4577

Coefficients for the equation unit peak $\qquad C_0$

 $[R = I_a / P] \qquad C_1$

 $[C_i = A \times R^2 + B \times R + C]$ C_2

A	В	C
-1.774	0.3301	2.4577
1.8622	-0.7397	-0.4627
-0.0648	0.2276	-0.1932

Site Data for Drainage Area to be Treated by Practice			
DESCRIPTION	SYMBOL	VALUE	UNITS
Design Storm [90% Rainfall Event Number]	P	1.5	In
Impervious Area	I	0.21	Ac
Area	A	0.21	Ac
Percent Impervious	%I	100.00	%
Runoff Coefficient [0.05 + 0.009 x %I]	R_{V}	0.95	CF
TOTAL VOLUME Required [WQ $_V$ = (P x R $_V$ x A) / 12]	WQ_V	1,072	CF
Design Storm [1-yr Storm Depth]	P		In
TOTAL VOLUME Required ($TMDL$) [WQ _V = 1-yr Storm Runoff]	WQ_V		CF

Water Quality Peak Flow Calculation				
DESCRIPTION	SYMBOL	VALUE	UNITS	
Water Quality Volume	WQ_V	1,072	CF	
Design Storm [90% Rainfall Event Number] or [1-yr Storm Depth]	P	1.5	In	
Time of Concentration	t_{c}	0.1000	Hr	
Runoff Volume [$Q = WQ_V / (A \times 3630)$]	Q	1.43	In	
Curve Number [CN = $1000 / (10 + 5P + 10Q - 10 \times (Q^2 + 1.25 QP)^{1/2}]$	CN	99.36		
Curve Number	CN	98		
Initial Abstraction $[I_a = 200 / CN - 2]$	I_a	0.04	In	
Ratio $[R = I_a/P]$	R	0.03		
$C_0 = A \times R^2 + B \times R + C$	C_0	2.47		
$C_1 = A \times R2 + B \times R + C$	C_1	-0.48		
$C_2 = A \times R2 + B \times R + C$	C_2	-0.19		
Unit Peak Discharge	q_{u}	575.13	cfs/mi ² /in	
Peak Discharge $[Q_p = q_u \times A \times Q / 640]$	Q_p	0.27	cfs	

Proposed Device			
DESCRIPTION	SYMBOL	VALUE	UNITS
Water Quality Peak Flow Provided	Q_p	0.3	cfs
Water Quality Volume Provided [WQ _V = 640 x 3600 x Q _P / q_u]	WQ_V	1,082	CF
Model Designation		JFP-1-1	
Quantity		1	